Objective

Virtual Reality (VR) is becoming increasingly popular in different domains such as private gaming, industrial training, academic research and education. The VR-Mine project will bring VR into the lecture halls of the European Mining Course, a joint Master programme for mining engineering students at Aalto University, RWTH Aachen and TU Delft. The pilot VR tool will be further tested in a lecture at Tallinn University of Technology, Estonia. The underground environment of VR-Mine will be based on a real tungsten mine in Mittersill (Austria), operated by our partner, the WOLFRAM Bergbau und Hütten AG.

VR has already proved to be effective in stimulating interest and improving education in diverse fields of study; the application of VR enriches didactic approaches used in raw materials teaching and mining education. Mining engineering (the discipline that applies science and technology to the extraction of minerals from the Earth) deals with very complex phenomena, ranging from geological conditions such as 3-dimensional deposits and structures to the planning of mines using countless underground drifts and shafts to heavy machinery operating in artificially ventilated atmospheres.

These characteristics and challenges vary significantly from mine to mine: a coal mine operates cutting technology in flat seams and it has to consider hazardous gases such as methane. By contrast, a metal mine conducts drilling and blasting in very hard but stable rock. Using VR, students will get the chance to virtually visit different mine sites and related phenomena and to interact with mining challenges. Being trained to understand technical-natural-human interdependencies is crucial to develop the skills and competencies of future mining professionals. In their future career, mining engineers do not only design future mines but they also create complex work plans and conduct safety checks. It is anticipated that VR training will be a university training tool of choice.

The solution (technology)

VR-Mine develops a virtual reality environment mimicking different underground mining situations in order to deliver a highly informative and interactive tool. It will be used at European universities that offer MSc courses in mining-related fields. VR-Mine will be developed with the Mittersill mine (Austria) and initially implemented in Tallinn (Estonia) and the European Mining Course in Aachen (Germany), currently applying for EIT-Labeling.

Partnership

  • Rheinisch-Westfaelische Technische Hochschule Aachen (RWTH Aachen), Germany (Lead Partner)
  • Tallinna Tehnikaülikool, TTÜ – Tallinn University of Technology, Estonia
  • Wolfram Bergbau und Hütten AG, Austria